

BLE Module RF-BM-ND01 Hardware Specification

SHENZHEN RF STAR TECHNOLOGY CO.,LTD.

Update: 2015/11/10

INDEX

Overview	3
Version History	4
Module Parameters	5
Module Pin Diagram and Definition	6
Mechanical Drawing and PCB Packaging Size	8
Module Naming Rules	9
Power Consumption	10
RF Testing Report	11
Layout Proposal (Antenna Location and Routing)	12
Recommended Operating Conditions	13
Reflow Soldering Conditions	14
Electrostatic Discharge Warning	15
Contact Us	16

Overview

The Bluetooth module, which is offered by Shenzhen RF-star Technology Co.,Ltd., is based on low power Bluetooth RF technology (BLE), and can be widely used in applications of short distance wireless communication, with the features of low power consumption, small size, long transmission distance, strong anti-jamming capability, and etc. The module is built in with high-performance inverted F antenna.

The module is helpful to develop consumer electronics products and smart phone peripheral products, which are based on Bluetooth 4.0 (or BLE). It will provide a quick BLE solution to the communication between customers' products and smart mobile devices.

• Version History

Version	Release	Remarks		
Number	Date			
V1.0	2015/10/15	✓ The first release		
V1.1	2015/11/10	✓ Modify the module naming rules		
V1.2	2016/02/22	✓ Modify the PCB packaging size of the module		

Module Parameters

·Working voltage: 1.8V to 3.8V (3.3V recommended)

·Working frequency: 2400~2483.5MHz

·Max transmit power: +5 dBm (normal output at 0 dBm)

·Receiving sensitivity: -97 dBm

·Frequency error: ±20 kHz

·Storage temperature: -50° C \sim +125 $^{\circ}$ C

Module Pin Diagram and Definition

> RF-BM-ND01

Figure 1 shows the pin diagram of the module, and table 1 shows the pin definition.

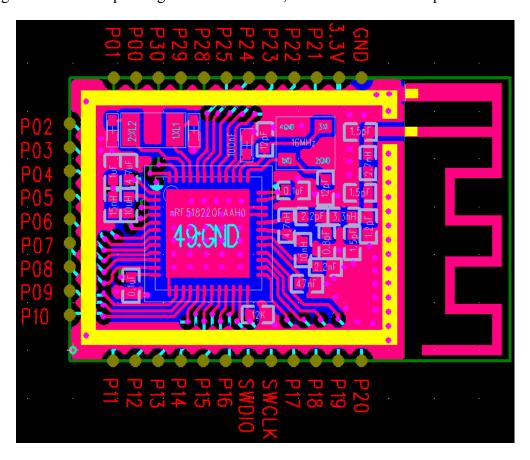


Figure 1. Pin Diagram

深圳市信驰达科技有限公司 SHENZHEN RF STAR TECHNOLOGY CO.,LTD.

pin	Name	Function	Note
Pin1	GND	GND	Ground
Pin2	VCC	Power supply positive input	Power supply, 3.3V
Pin3	P21	I/O	
Pin4	P22	I/O	
Pin5	P23	I/O	
Pin6	P24	I/O	
Pin7	P25	I/O	
Pin8	P28	I/O	
Pin9	P29	I/O	
Pin10	P30	I/O	
Pin11	P00	I/O	
Pin12	P01	I/O	
Pin13	P02	I/O	
Pin14	P03	I/O	
Pin15	P04	I/O	
Pin16	P05	I/O	
Pin17	P06	I/O	
Pin18	P07	I/O	
Pin19	P08	I/O	
Pin20	P09	I/O	
Pin21	P10	I/O	
Pin22	P11	I/O	
Pin23	P12	I/O	
Pin24	P13	I/O	
Pin25	P14	I/O	
Pin26	P15	I/O	
Pin27	P16	I/O	
Pin28	SWDIO	I/O	
Pin29	SWCLK	I/O	
Pin30	P17	I/O	
Pin31	P18	I/O	
Pin32	P19	I/O	
Pin33	P20	I/O	

Table 1. Pin Definition

Mechanical Drawing and PCB Packaging Size

Figure 2 shows the mechanic drawing of the module and the PCB packaging size. Module thickness is 0.9±0.2 mm.

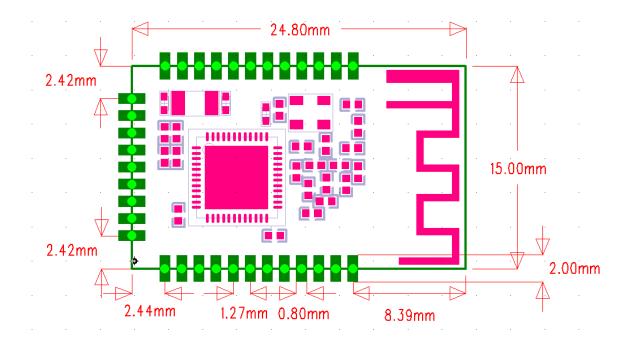


Figure 2 RF-BM-ND01 Mechanical Drawing and Packaging Size

Module Naming Rules

The first two letters stands for the company name. The two letters "BM" shows this is a Bluetooth module. "ND" means the BLE chip is Nordic. And "01" indicates that this is the first version of the module.

Power Consumption

Testing environment: $TA = +25^{\circ}C$, $VBAT = 3.3 \text{ V}_{\circ}$

Parameters		Testing	Mini	Type	Max	Unit
		conditions	value		value	
MCI I Wl	TX	0dbm		17		
MCU Working	RX	High gain mode		9		
MCII Stand by	TX					
MCU Stand-by	RX					mA
MCU LPDS -	TX					
	RX					
MCH CL	TX					
MCU Sleeping R				0.7		μΑ
Calibrated	TX	Voltage = 3.3V,		9.1		
Current Peak	TX	Powe r=4 dBm				
Value		Voltage =3. 3V,		5.9		mA
	RX	Power =4 dBm				

● RF Testing Report

Test results in the 39^{th} channel under T A = $+25^{\circ}$ C and V BAT = 3.3V is shown in the table below:

Test item	Parameters	Test value	unit	
Transmitter	Power	-1	dBm	
	Frequency shift	±20	kHz	
	Radiation (30M -1G)	-36		
	Radiation (1G -12.75G)	-30		
Receiver	Sensitivity (8% PER)	-93	dBm	

Layout Proposal (Antenna Location and Routing)

The Inverted-F antenna is built in the PCB for free space electromagnetic radiation. Position of the antenna and the scope of the antenna layout is the key to increase data rate and transmission range.

Here is the suggestion about the layout of antenna and routing:

- 1. Place the antenna at the edge of the PCB board or on the corner.
- 2. Ensure that each layer under the antenna is without wire or copper foil.
- 3. Better hollow out the yellow boxed area in figure 4, to ensure S11 affects little.

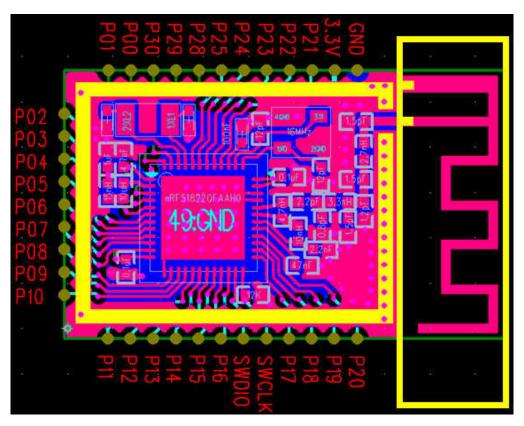


Figure 4

Recommended Operating Conditions

The good performance will not be guaranteed for operations under the conditions beyond the limits of the parameter values in the following chart for a long time. And such operations for a long time will more or less affect the long-term reliability of the module.

Note:

- 1) Operating temperature is restricted by the frequency change of the crystal;
- 2) To ensure the wireless RF performance, the power supply ripple must be less than $\pm 300 \text{mV}$

Identification	Conditions	Min. Value	Typical Value	Max. Value	Unit
Power supply and	Battery mode	1.8	3.3	3.8	V
IO					
Operation	/	-40	25	85	$^{\circ}$
Temperature					
Environment		-20		20	°C/min.
Temperature Swing					

• Reflow Soldering Conditions

- 1. Heating method: Conventional Convection or IR/convection;
- 2. Maximum 2 times of reflow soldering are allowed, based on the following reflow soldering profile (see figure 5);
- 3 Temperature profile: Reflow soldering shall be done following the temperature profile below (see figure 5);
- 4. Peak temperature: 245°C.

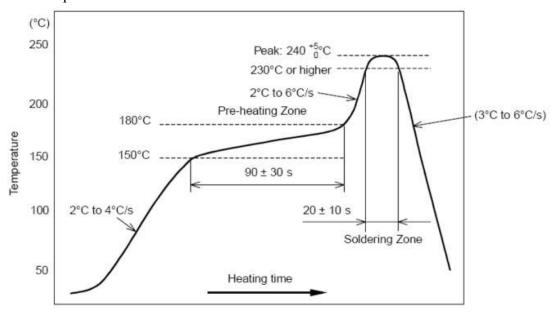


Figure 5. Temperature Curve of Soldering Heat Resistance (at Soldering Point)

Cautions of Electrostatic Discharge

The module will be damaged by electrostatic discharge. We recommend that all the modules should be treated with the following 3 precautions:

- 1. Must follow the anti-static measurements and cannot carry the module by bare hand.
- 2. Modules must be stored in the area where there is electrostatic prevention.
- 3. Anti-static circuit where there is high voltage input or high frequency input should be considered during the product design.

Static electricity may cause from minor performance degradation to the failure of the whole device. Considering the fact that even tiny changes of parameters may lead to the result that the whole device will fail to comply with certifications, the module is easier to be damaged by static electricity.

Contact Us

深圳市信驰达科技有限公司

SHENZHEN RF-STAR TECHNOLOGY CO.,LTD.

Tel: +86 755-8632 9829 Website: <u>www.szrfstar.com</u> Fax: +86 755-8632 9413 E-mail: sales@szrfstar.com 地址: 深圳市宝安区宝源路互联网产业基地 A 区 8 栋 2 楼

Add.: 2F, Block8, ZoneA, Internet Industry Base, Baoyuan Road, Bao'an District,

Shenzhen 518051, China